Zinc oxide nanoparticles delay human neutrophil apoptosis by a de novo protein synthesis-dependent and reactive oxygen species-independent mechanism.

نویسندگان

  • David M Goncalves
  • D Girard
چکیده

Inflammation is one of the major toxic effects reported in the literature following nanoparticle (NP) exposure. Knowing the importance of neutrophils to orchestrate inflammation, it is surprising that the direct role of NPs on neutrophil biology is poorly documented. Here, we investigated if ZnO NPs can alter neutrophil biology. We found that ZnO NPs increased the cell size, induced cell shape changes, activated phosphorylation events, enhanced cell spreading onto glass, but did not induce the generation of reactive oxygen species (ROS). Treatment of neutrophils with ZnO NPs markedly and significantly inhibited apoptosis and increased de novo protein synthesis, as demonstrated by gel electrophoresis of metabolically [(35)S]-labeled cells. Utilization of the protein synthesis inhibitor, cycloheximide, reversed such antiapoptotic effect. We conclude that ZnO NPs are activators of several human neutrophil functions and that they inhibit apoptosis by a de novo protein synthesis-dependent and ROS-independent mechanism. This is the first example that a NP acts on the neo-synthesis of polypeptides.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Investigation of toxicity of zinc oxide nanoparticles synthesized by olive extract on growth and pigments in Borago officinalis

                                                                                  The synthesis of metal nanoparticles has attracted the attention of scientists in various fields, particularly in the chemical, physical, biological and medical sciences. Using extract of plant for nanoparticle synthesis can be advantageous over other biological processes because it eliminates the elaborate proc...

متن کامل

Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species

BACKGROUND Zinc oxide nanoparticles (ZnO NPs) have received much attention for their implications in cancer therapy. It has been reported that ZnO NPs induce selective killing of cancer cells. However, the underlying molecular mechanisms behind the anticancer response of ZnO NPs remain unclear. METHODS AND RESULTS We investigated the cytotoxicity of ZnO NPs against three types of cancer cells...

متن کامل

ZnO Nanoparticles: A Promising Anticancer Agent

Nanoparticles, with their selective targeting capabilities and superior efficacy, are becoming increasingly important in modern cancer therapy and starting to overshadow traditional cancer therapies such as chemotherapy, radia‐ tion and surgery. ZnO nanoparticles, with their unique properties such as biocompatibility, high selectivity, enhanced cytotoxicity and easy synthesis, may be a promisin...

متن کامل

Heme inhibits human neutrophil apoptosis: involvement of phosphoinositide 3-kinase, MAPK, and NF-kappaB.

High levels of free heme are found in pathological states of increased hemolysis, such as sickle cell disease, malaria, and ischemia reperfusion. The hemolytic events are often associated with an inflammatory response that usually turns into chronic inflammation. We recently reported that heme is a proinflammatory molecule, able to induce neutrophil migration, reactive oxygen species generation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Toxicology in vitro : an international journal published in association with BIBRA

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2014